

Sushil Atreya Toby Owen

plan

Why bother with giant planets?

- Jupiter: what's missing? what to do?
- Saturn: post Cassini-Huygens
- Uranus and Neptune: ?????

Probes: why and where?

Extrasolar Giant **Planets** (EGP)

Origin of Jupiter's atmosphere

*Gravitational instability: Protoplanetary clumps

*Core accretion model

- Core from grains of ice, rock, metal
- Core grows to critical mass (~10 M_F)
- Gravitational collapse: H₂, He (most volatile gases) captured
- Atmosphere from H₂, He; and volatiles released from core
- Planetesimals added throughout the formation (and afterward) to explain heavy element enrichment
 - Cold icy planetesimals
 - Clathrate hydrates, "cold", nevertheless

Origin: what must be known?

abundances of "heavy elements" in "well-mixed" atmosphere

Elemental abundances at Jupiter (Galileo Probe Mass Spectrometer, GPMS)

Cylindrical Maps of Jupiter: 1° S – 14° N

NASA Infrared Telescope Facility

Middle Infrared Array Camera: 4.8µm

Jupiter clouds

Equilibrium

Hot Spot

Day side clouds and night side lightning

 $(140 R_{J}=10 Mkm)$

Cold planetesimals and heavy element enrichment Requires T≤ 30 K to trap N₂ and Ar

2-4× solar H₂O

Origin: clathrate-hydrates

Cold planetesimals from interstellar cloud may not have survived the formation of solar nebula (high T)

- Clathrate hydrates trap volatiles containing heavy elements in the cooling, feeding zone of Jupiter
- Predicts 9× solar H₂O, with 100% efficiency of trapping in clathrates (Gautier et al., 2001)

What is missing?

Water

abundance in "well-mixed" atmosphere

H₂O is presumably the original carrier of heavy elements to Jupiter.

Probes at Jupiter

How deep?

- Base of water cloud (5 12 bar) "minimum", but
- Must go deeper, to ensure mixed atmosphere is "really" reached (variability in NH₃, H₂O; hotspots)
- Recommend at least 50 bars, preferably 100 bars

Where?

≥ Three probes: equatorial, mid- and high-latitudes

Cassini orbiter at Saturn

Measures stratospheric hydrocarbons

Heavy elements:

 $C/H = 6\pm 1 \times solar; P/H = 5-10 \times solar (?)$

but

- No O, N, S, Ne, Ar, Kr, Xe, isotopes
- No deep atmospheric cloud or dynamics data

Probes at Saturn

How deep?

- Base of water cloud (25-45 bar) "minimum", but
- Must go deeper, to ensure mixed atmosphere is "really" reached (variability in NH₃, H₂O; warm areas)
- Recommend at least 50 bars, preferably 100 bars

Where?

≥ Three probes: equatorial, mid- and high-latitudes. Microwave radiometry would enhance probe mission

Cloud model for Neptune

Summary

- Mixed atmosphere composition and related dynamics of gp, is key to solar system formation
 - Probing to 50-100 bars at Jupiter and Saturn, yields all heavy elements, D/H, ¹⁴N/¹⁵N, noble gas isotopes
- 10 bars at Uranus and Neptune, yields He, Ne, Ar, Kr, Xe, and C. 50 bars yields all these, plus S, N (?), 14N/15N, but not O which is not critical.
- Enabling Technologies: TPS, RPS, Communications, Integrated Systems for high pressure-high temperature environments

MP³ strategy

Multiple Probes to Multiple Planets with Multinational Partnerships

Program of one Probe mission every 7 -10 years

- NF+ or fs, with Solar Power: Jupiter and Saturn
- NF+ or fs, with RPS: Uranus
- FS, with RPS: NPOP (Neptune Orbiter with Probes/ Triton Lander)
- Missions of opportunity, e.g. Europa orbiter

[NF+ enhanced New Frontier: 800 M\$+; fs flagship: 800 - 1400M\$;

FS Flagship: 1400 - 2800 M\$]

Multiple Probes at <u>ALL</u> giant planets!

Questions?

atreya@umich.edu

http://www-personal.engin.umich.edu/~atreya/

Latest reference:

Atreya, S.K. and Wong, A.S., "...case for multiprobes", chapter in *Outer Planets* (T. Encrenaz, et al., eds.), Springer, 2005, pp 121-136.